

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 1

Why Devicetree Needs to Evolve
Bill Fletcher – Linaro

CONTENTS

ABSTRACT	

INTRODUCTION	

ABOUT DEVICETREE	

THE CURRENT STATE OF DEVICETREE	

WHY DEVICETREE NEEDS TO EVOLVE	

System View	
Tools	
Source File Location	
Lifecycle	

Specification	

DEVICETREE EVOLUTION - A LINARO LEAD PROJECT	

ABOUT LINARO	

ABOUT LINARO LEAD PROJECTS	

REFERENCES	

MORE INFORMATION	

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 2

ABSTRACT

Devicetree is the core technology that enables the Arm ecosystem to build flexible and
adaptable embedded systems. The core reason for the existence of Devicetree in Linux is
to provide a way to describe non-discoverable hardware. Booting a rich Operating
System (OS) image such as Linux on an application-specific System-on-Chip (SoC)
requires that a description of the hardware platform configuration is passed to the OS at
boot time. The diversity supported by the Arm ecosystem means that the task of
describing this hardware configuration systematically is a complex and evolving problem.
There are emerging requirements for the Devicetree specification to support such
features as a system-level view, enhanced tooling, a location for source files that doesn’t
encourage duplication and a comprehensive view of the Devicetree lifecycle. This white
paper explains the rationale behind the new Devicetree Evolution Lead Project in Linaro.

INTRODUCTION

When first started, any software has to know what hardware it is booting on. At the
simplest level, it may rely on assumptions about the hardware baked into its image at
compile time. At the other end of the complexity and flexibility spectrum, it can assume
no prior knowledge of the hardware but instead apply some kind of exploration or
discovery mechanism. A third option is that it can be given some additional information
about the hardware at boot time (as a file or a table) which it uses as a guide to boot and
initialise the hardware which that information describes.

These are generalisations. In the real world, all software contains some explicit
assumptions about the target hardware it expects to run on. Conversely, some adaptation
mechanisms apply even at the simplest level - even an RTOS image may investigate the
content a hardware version register and choose between different hard-coded
configurations based on the register contents.

Sources of Target Hardware Information

Source of hardware information Examples

Compile-time assumptions RTOS running on microcontroller

Discovery mechanisms PC booting and enumerating PCIe bus
peripherals

Hardware description table or file PC ACPI table
Arm Devicetree file

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 3

Baked-in compile-time assumptions in a code image mean that the relationship between
hardware and software image is fixed. Typically only one hardware platform will be
supported, and any change to the hardware will require a new image to be built.

This situation would not be appropriate for a rich OS on PC hardware. No one would
expect to rebuild Windows to run on their particular PC. PC hardware is relatively
commodified and generally the OS knows what to expect. An image booting on a PC also
receives a description of the underlying hardware in the form of the ACPI tables. Also,
some bus-connected peripherals are discoverable at boot time.

Booting a rich OS image such as Linux on an application-specific System-on-Chip (SoC)
has particular challenges. This is a common case in the Arm ecosystem. All application-
specific SoCs are different by definition. The OS does not know what hardware to expect
by default and yet (as with the PC) there’s no desire to produce an OS that can only boot
on one specific platform. The solution to this conundrum is to pass a description of the
hardware platform configuration to the OS at boot time. For Arm based embedded SoCs,
the specification for this configuration is called Devicetree.

ABOUT DEVICETREE

Devicetree is the core technology that enables the Arm ecosystem to build flexible and
adaptable embedded systems. The core reason for the existence of Devicetree in Linux is
to provide a way to describe non-discoverable hardware.

The ecosystem supported by the Arm CPU architecture is very diverse. Embedded
application processors contain a custom selection of peripherals from a wide range of
potential options and memory interfaces. The vast majority of these peripherals and
interfaces need to be described in configuration information which is typically passed to
the OS at boot time. The diversity supported by the Arm ecosystem means that the task
of describing this hardware configuration systematically is a complex problem.

Devicetree data can be represented in several different formats. It was originally derived
from the Devicetree format used by Open Firmware to encapsulate platform information.
The Devicetree data is typically created and maintained in a human readable format in
.dts and .dtsi source files.

The Devicetree source is compiled into a binary format contained in a Devicetree Blob
(.dtb) file. The format of the data in the .dtb file is also referred to as a Flattened
Devicetree (FDT). The Linux operating system uses the Devicetree data to find and
register the devices in the system. The FDT is accessed in the raw form during the very
early phases of boot, but is unpacked into a live tree for more efficient access for later
phases of the boot and after the system has completed booting.

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 4

Devicetree Lifecycle Diagram

The Devicetree format is expressive and able to describe most board design aspects
including:

● the number and type of CPUs
● base addresses and size of RAM
● busses and bridges
● peripheral device connections
● interrupt controllers and IRQ line connections
● pin multiplexing
● Clock and power domains

THE CURRENT STATE OF DEVICETREE

To deal with the complexity in handling families of related SoCs, and also the same SoC
populated into different evaluation of production boards, the source format of .dts and
.dtsi files in the kernel is already structured to separate SoC family, specific SoC, and
board.

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 5

The pattern is:

● SoC family defines all common attributes of family
● Specific SoC adds portions specific to that SoC
● Board disables any peripheral that does not have a meaningful connection

Devicetree files hierarchy

Devicetree is a successful project used to configure not only the Linux kernel, but also
many other software components. For example: Trusted Firmware (TF-A), U-Boot, OP-
TEE, and also the XEN hypervisor and Zephyr RTOS.

Some software components that use Devicetree

Typical Linux Boot Optional additions to
Linux

Other OS or Hypervisor

Trusted Firmware (TF-A) OP-TEE Zephyr

U-Boot Xen

Linux kernel FreeBSD

A number of enhanced use cases for Devicetree already exist. A ‘master’ Devicetree can
be parsed. A subset configuration might be used by a bootloader, or multiple parallel
subsets might be used to allocate static resources between hypervisor client partitions.
Multiple different system views can allow for heterogeneous multiprocessing, for
example on a complex SoC or FPGA.

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 6

Devicetree enhanced use cases

Use case Example

Parsing for one subset U-boot’s ftdgrep tool selects a subset of
the u-boot dtb for use in SPL

Parsing for multiple parallel subsets Xen in Dom-0 less mode uses DT formats
to partition resources between domains

Parsing for different heterogeneous cores Tools to generate configurations for
heterogeneous cores in FPGA designs

Assembling a Devicetree from separate
binaries

Android is standardizing on separation of
SOC DTB and OEM (aka “phone”) DTB.
They have a partition format for each.

Compile-time generation of configuration
for RTOS

Zephyr is doing code generation today
from DT on a case by case basis

WHY DEVICETREE NEEDS TO EVOLVE

System View

Multiple software components need to reference subsets of the description of the
hardware e.g. for boot, security or virtualisation. To avoid Devicetree diversity or source
file duplication between these software components, there needs to be a unique system
level Devicetree definition that will be referenced in some form by all software
components running on the hardware platform.

Devicetree usage should be defined for each boot stage and execution context. This
could be a unique DTB that can be modified on the fly by the different firmware, or a
fixed DTB by boot stage. Potentially it could also define the way to provide data in a
verified/secured way between the different boot stages.

Similarly the system view should provide a unique system description that contains all
peripherals and memories, with an associated view per processor complex - these could
be (real or virtualized) Cortex-A, Cortex-M or DSP cores.

The system view should manage peripherals and memory carveouts assignment between
the different execution context and the different software components and include
“virtualized” devices like secure clocks handled by firmware.

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 7

The approach needs to work across heterogeneous SoCs and FPGAs, board variations,
bootloaders and OSes.

Tools

As Devicetree evolves towards the increased complexity of supporting an overall system
view, it’s important to be sure that the source code description for the system is
reasonably sane, rather than only syntactically correct. Currently the Devicetree compiler
dtc only makes syntax checks. For example, it doesn’t make any conformance checks
against bindings.

Currently there isn’t any way for an end-user to know which information in the
Devicetree is configurable and which information is considered static. Having the
mutability of properties defined and having some reference tool example that would
expose user modifiable information and then generate a Devicetree would be extremely
useful. Having this infrastructure would both improve the user experience and make it
less error prone to configure/modify a Devicetree as well as allow for third party
implementations of configuration tools.

Source File Location

Devicetree source files are located in the Linux kernel sources under the arch directory.
For Arm systems, they are in arch/arm and arch/arm64. Other software components that
reference them need to decide whether to reference the source files from outside, or
maintain a local copy. In these additional external use cases, although the Devicetree
description language used by the different components is the same, the way it is used
may be different: the bindings may not be 100% aligned. Ultimately this means that, even
for the same SoC, the source .dts files and associated definitions have to be duplicated.
This is despite the fact that the Devicetree sources are intended to be OS independent.

.dts files need to be in a single separate repository that all users can work on and use
equally. This will be shared by all software components to avoid file duplication. An issue
is that on one side, software components want to be self-contained and have all required
information/files to run, but SoC vendors would also like to limit file duplication and the
associated maintenance.

Lifecycle

The Devicetree lifecycle needs to be better defined. Devicetrees may be assembled on-
the-fly with overlays, verified or updated. This may need to accommodate, or at least
detect, differences in specification version between old and new, or base and overlay .dtb
files. i.e.

● It should be possible to verify the DTB and identify the DTB version like any

software components for support, validation, deployment purposes
● Devicetree overlays should be included in the lifecycle model
● Provide mechanisms to update the DTB

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 8

● Provide a mechanism to be able to deprecate legacy bindings whilst maintaining
support for old kernels during the transition.

Specification

The last official release of the Devicetree specification was Dec 20, 2017 (v0.2). There
are several open issues on github related to the specification. The specification should
evolve to capture the above evolution of Devicetree.

DEVICETREE EVOLUTION - A LINARO LEAD PROJECT
Linaro has defined a Lead Project with its membership to address the needs of the Arm
ecosystem as summarised above. The Devicetree Evolution project aims to:

● collect and consolidate the different Devicetree requirements from the Linaro
membership and the ecosystem.

● update the different specifications (Devicetree, EBBR,...) as needed
● work to ensure coherency between all software components using DT

The project is expected to deliver:

● A Devicetree specification update
● Modification of each software component to support the Devicetree evolution
● Implementation on selected reference platforms

Groups and projects within Linaro will provide a set of reference platforms covering the
Devicetree diversity we want to address with this project and will provide regression
testing and maintenance.

The project has several logical areas that we are proposing to track as individual
Initiatives. It is expected that multiple different Linaro member engineers and working
groups will focus on these Initiatives. We will further sub-divide the Initiatives and add
more detail as necessary as we track work at the Epic and Story level in Linaro's Jira
database.

ABOUT LINARO
Together with Arm, Linaro co-maintains the Arm software ecosystem, providing the tools,
security and Linux kernel quality needed for a solid base to differentiate on. Enabling
markets on Arm architecture since 2010, Linaro works with companies to consolidate
Arm code bases in the ecosystem as a whole, as well as in specific market segments. We
do this by providing an engineering forum where industry and community can work
together on open source software to solve common problems. This collaborative
approach reduces software fragmentation across the many Arm platforms and enables
industry and community to reduce costs for development and validation of Arm-based
software.

WHITE PAPER | Why Devicetree Needs To Evolve

© Linaro 2019. All Rights Reserved Page 9

ABOUT LINARO LEAD PROJECTS
Linaro Lead Projects are significant activities spanning working groups, market segments
and the Linaro Membership to deliver specific key work items. They are:

● created via the Linaro Big Ideas Process
● have a beginning and an end
● have a charter
● are approved by the Linaro TSC
● are reviewed for relevance during each Linaro Connect

REFERENCES
https://binarydebt.wordpress.com/2018/10/06/how-does-an-x86-processor-boot/
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-
dummies.pdf
https://elinux.org/images/1/15/Device_tree_in_U-Boot_SPL.pdf

MORE INFORMATION
Contact the author
bill.fletcher@linaro.org

Contact Linaro
https://www.linaro.org/contact/

Attend Linaro Connect
https://connect.linaro.org/

