

big.LITTLE mini-summit

Amit Kucheria, Power Management Tech Lead

LCE 2012, Copenhagen

Asymmetric cores

- Capacity
- Energy
- Latencies
- Operating points
- Cache types

In-kernel Switcher (IKS)

- Pros
 - Minimal kernel changes
 - Available now through Linaro
- Cons
 - Half the cores used

Heterogenous MP (HMP)

- Pros
 - All cores can be used
- Cons
 - Large changes to Linux kernel
 - Production-ready only next year
 - Basic feature-set for partners 1Q 2013
 - Upstreaming several months
 - Optimisations

Being a catalyst...

- Solving long standing problems
 - Better CPU qiesce
 - Better scheduling
- Useful for SMP (A9, A15)

Mini-summit agenda

- Plenary Robin Randhawa
 - Whirlwind tour of experimental results on TC2
- Session 1 (09:00 09:55)
 - Status overview
 - Making Linux work with asymmetric systems
- Session 2 (10:00 10:45)
 - The Bluesky session: What would the ideal power-aware kernel do? (45 mins)
- Session 3 (11:00 11:55)
 - Back to reality: What do we have today and the sequence of steps to get to where we want to be (55 mins)
- Session 4 (12:00 13:00)
 - Workloads and Test Automation (30 mins)
 - General Discussions on further work and Wrap-Up (30 mins)

big.LITTLE on TC2

Robin Randhawa

ARM's Test Chip 2 (TC#2): An Overview

- A Versatile Express core tile publically available:
 - Capabilities
 - 2 x A l 5 (r2p l) @ up to 1.2 Ghz
 - 3 x A7 (r0pl) @ up to IGhz
 - CCI/DMC/GIC/ADB (r0p0)
 - DMA (PL330)
 - 2GB external DDR2 memory@ 400Mhz
 - 64k internal SRAM
 - Coresight debug (including JTAG and ITM trace but no STM)
 - No GPU
 - cpufreq support: Independent for each cluster with limited voltage scaling
 - cpuidle support: Cluster power gating

IKS: CPU Migration

- big.LITTLE extends DVFS
- DVFS algorithm monitors load on each CPU
- When load is low it can be handled on a LITTLE processor
- When load is high the context is transferred to a big processor
- The unused processor can be powered down
- When all processors in a cluster are inactive the cluster and its L2 cache can be powered down

IKS: CPU Migration

- big.LITTLE extends DVFS
- DVFS algorithm monitors load on each CPU
- When load is low it can be handled on a LITTLE processor
- When load is high the context is transferred to a big processor
- The unused processor can be powered down
- When all processors in a cluster are inactive the cluster and its L2 cache can be powered down

IKS: Results for Audio on TC2

TC2:
A15 up to 1.2 GHz
A7 up to 1 GHz
Better results expected on representative silicon.

- Power compared to executing the use case on A15
- IKS does not use A15s during Audio run

IKS: Results for BBench + Audio on TC2

TC2:
A15 up to 1.2 GHz
A7 up to 1 GHz
Better results expected on representative silicon.

- Performance is measured as from page loading times of BBench
- Results normalised to power and performance consumed on same use case run on A15 only

IKS: Hispeed2

IKS: Results: Bbench + Audio

BBench page + Audio

TC2:
A15 up to 1.2 GHz
A7 up to 1 GHz
Better results expected on representative silicon.

Power improves with no performance cost

MP solution – more details

- Scheduler modifications:
 - Treat big and LITTLE cpus as separate scheduling domains.
 - Use PJT's load-tracking patches to track individual task load.
 - Migrate tasks between the big and the LITTLE domains based on task load.

MP: ARM TC2: Audio

- Workload: Audio (mp3 playback)
- Performance/Energy target:
 - A7 energy
- Status:
 - Audio related task do not use A15s, but the power consumption is still significantly more than A7 alone.
- MP not as power efficient as IKS yet
- Todo:
 - Target spurious wake-ups on A15. All the extra power comes from the A15's which shouldn't be used at all.

	Energy
A7	30.79%
MP	39.86%

MP: Audio workload analysis

- Where is the extra energy spent with MP?
 - Need a look at why A15's consume power when they are not necessary
- We see unwarranted wake ups on A15
 - No user threads running on A15
 - Tend to favour CPU0
 - Examples:
 - tick_sched_timer (99.7% on CPU0)
 - Hrtimers
 - Workqueue

MP – Top Issues

- Spurious wakeups
 - A15s are woken up by scheduler ticks (mainly)
 - Workqueues
 - Timers
 - RCU
 - Scheduler ticks
- cpu wakeup prioritisation
 - Pick the cheapest target cpu
- Balancing
 - Scale invariance
 - Load accumulation rate
 - Spread load to A7s when A15s are overloaded
 - Pack vs. spread
- Cluster aware cpufreq governors

